
J .  Fluid Mech. (1980), vol. 96, part 4, pp. 797-802 

Printed in &eat Britain 
797 
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A class of exact, self-similar, time-dependent solutions describing free surface flows 
under gravity is found which extends the self-propagating class of solutions discovered 
earlier by Freeman (1972) to those which decay with time. 

1. Introduction 
The equations describing time-dependent inviscid fluid motions with a free surface 

present severe difficulties owing to nonlinear boundary conditions and the exact 
solutions for such flows have been quite rare. The recent work in this area is due to 
Longuet-Higgins (1972,1976), who has also summarized previous work on the subject. 
Even though the flows he has considered are governed by the full inviscid equations, he 
has not taken the important effects of gravity into account. 

In a different class of flows under the so-called long-wave approximation, one of the 
first studies is due to Burns (1953) who clearly set out the shallow water equations 
governing sheared flows with a free surface, for which gravity plays an essential 
role. He wrote out the nonlinear characteristic equations that describe waves on a 
linearly sheared undisturbed flow and discussed in some detail the linearized version 
of these equations. Burns’ work was followed later by Blythe,Kazakia & Varley (1972) 
who introduced generalized Riemann invariants for shear flows. They gave explicit 
large amplitude progressive wave solutions for the linear shear flow, briefly discussed 
earlier by Burns (1953). In a paper immediately following Blythe et al., Freeman (1972) 
gave a class of exact similarity solutions describing simple waves on shear flows. These 
are self-propagating nonlinear waves whose speed in the horizontal direction is 
proportional to (gH)*, where H is the depth of water in the channel and $, the accelera- 
tion due to gravity. By an ingenious transformation, the final solution was expressed 
in terms of incomplete /3 functions. 

In  the present paper, we give a class of exact, self-similar, (explicitly) time-depend- 
ent solutions of inviscid, shallow water equations, which generalize those solutions of 
Freeman (1972) which are self-similar. This class is similar to Longuet-Higgins (1972) 
with the difference noted above, namely, these solutions, in the long-wave approxima- 
tion, describe gravity waves while the gravity effects are absent in the solutions 
discovered by Longuet-Higgins for the two-dimensional and three-dimensional fluid 
equations without the simplification introduced by the long-wave approximation. In 
our study we seek directly self-similar solutions of the governing equations, an 
approach somewhat different from Freeman’s, though his solutions provided a useful 
guide and an important check on the newer class that we have found. 
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Section 2 gives the equations of motion. In Q 3 the self-similar equations are derived 
and their solutions are found. The results and conclusions are contained in Q 4. 

2. Equations of motion 

mation ' are 
The unsteady, two-dimensional inviscid flow equations in the 'hydraulic approxi- 

(2.1) 

ux+vy = 0, (2.2) 

Ut + UU, + vuY + #Hx = 0, 

where u, v are velocity components in the x and y directions respectively. The former 
coincides with the uniform horizontal bottom and the latter with the vertical direction. 
The so-called hydraulic approximation in the above equations is manifested in the 
replacement in (2.1) of the pressure p by the uniform gravitational pressure. 

This approximation implies the shallow water approximation Ho/L < 1, where H, 
is a characteristic depth and L a typical wavelength. 

The surface boundary condition now becomes 

v=H,+uH, on y = H .  (2.3) 

The second condition that the pressure is constant on the free surface has been in- 
corporated in the hydraulic approximation p = po  + g"(H - y). 

At the bottom, 

v = O  on y = O .  (2.4) 

Equations (2.1) and (2.2) govern the two unknown functions u(x, y, t) and v(x, y, t) 
while H(x, t) should be found such that the boundary conditions (2.3) and (2.4) are 
satisfied. 

To simplify the boundary conditions we change the independent and dependent 
variables : 

In terms of these variables equations (2.1) and (2.2) become 

Ht + uH, + H(u, + w,) = 0, 

Ut -I- UU, + wuB + gHx = 0, 

(2.6) 

(2.7) 

w = O  on z = O ,  1. (2.8) 

while the boundary conditions (2.3) and (2.4) simplify to 

3. Self-similar solutions 
We look for solutions of (2.6)-(2.8) in the form 

H = t"lh((), 

= tbxf(tJ 7)s 

w = t"lS(5, r) ,  
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where 5 = xta1, 7 = 2. 

The choice of 7 = z was dictated by the form of boundary conditions (2.8). A simple 
calculation shows that the self-similar form (3.1)-(3.3) is possible only if 

a,=--a, b l=-a ,  c l = - 1 ,  a l = u - 1 ,  (3.4) 

where a is a parameter. We restrict our attention to solutions which are either self- 
propagating or decay with time so that a > 0. Equations (2.6) and (2.7) now assume 
the form 

1 d h  

h d5 
f ~ + g , + [ ( a - l ) 5 + f ] - - - 2 a  = 0, (3.5) 

(3.6) 

Multiplying (3.5) by (a- 1)  f ;+  f and (3.6) by h, and subtracting, we get, after some 

sf ,+r(CL--l) f ;+f l~~-af+g~ - d h  = 0. 

rearrangement, 

Integrating (3.7) with respect to 7 and using the boundary condition g = 0 a t  7 = 0 
corresponding to w = 0 a t  z = 0,  we get 

where h' = dh/dc. The second boundary condition g = 0 a t  7 = 1,  corresponding to 
w = 0 at 7 = 1, leads to 

This is a generalization of the Burns' condition to nonlinear time-dependent flows. 
After a cumbersome manipulation it is possible to derive the following partial differ- 
ential equation for 

N = ( - 1 ) [ 2 t i ( r ~ - l ) + U ] - ~  

zz ( - 11 [2E(a - 1)  + 2 4  5-1f1-1, (3.10) 

Here a parameter ?i is defined by 

= 2Z(#h)4. (3.12) 

Since we shall be mainly interested in flows for which N is a function of 7 only, the 

f = (2ti)-15CT, 9 = (2E)-l G, 5 = 2Z(Qh)*, (3.13) 

direct substitution 
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in (3.5) and (3.6) and elimination of G immediately leads to t  

d2N 
[ ( 1  + 2 a 3 ( a  - 1 ) )  N S  + 8 ( 2 a  - 1)  N 2  + &N] - 

d?12 

- [2(1+ 2a(a - I ) E 2 )  N2+ (5a - 2 )  Bh' + $1 rg)' = 0. (3.14) 

Equation (3.14) can be integrated to give 
(N, - N)-(Z~~iN~fl) /2[~(1-2~)iN~-lI  (N - 3 ) - (2~ant;- l ) / (Z[~(l-Z~)~~-l l  

2 d N ,  (3.15) 
N 3  

where C is a constant and Nl and N, are the roots of the quadratic equation 

given by 
[ 1  + 2aE2(a- l ) ]  N 2 + 8 ( 2 a -  I)"+ 4 = O 

( 1 - 2 a ) E & ( 3 - 2 ) 9  
Nl , ,  = 2 [ 1 + 2 a ( a - 1 ) 8 ~ ]  * 

(3.16) 

We assume that N,, N, are real and, therefore, Z2 > 2. Besides, we restrict ourselves to 
flows which do not contain a critical level where particle speed is equal to wave speed, 
so that f + ( 1  - a)  5 anywhere in the range off. The (normalized) velocity 

U = f / (gh)* = 2B( 1 - a) - l / N  

vanes from [< = 2B( 1 - a )  - 1/N,  at the bottom 7 = 0 to l& = 28( 1 -a) - l/Nl at the 
surface 7 = 1 ,  where Nl > N,. With these boundary conditions, equation (3.15) can 
be written as 

which can be expressed in terms of beta functions as 
2z(  1 - 4a)N2-  3 2 8 ( l -  4u)N1 - 3 U + 1/N,  - 2B(l  -a) 
2 ~ (  1 - 2a)  Nz- 1' 2Z( 1 - 2a)  Nl- 1' l / N ,  - l/Nl 

'( 2 [ h ( l -  2a)  N,- 11' 2[Z( 1 - 2a)  Nl- 1)' 

) (3.18) r =  28(1-  4 a )  N,-3] 28(1-4a)N1-3  

1 1+2a8N1 
provided p E 1 -- 

2&(1-  2 a )  N1- 1 

lJE 1- - -  
2 a( 1 1+2eN2 - 2a)  N, - 1 > 0-J 

1 (3.19) 

We substitute the velocity profile (3.17) in 

~1+2ab inr , , l r~~1-2~)~ , -11  
d u, (3.20) 

x ( ~ + ~ - 2 Z ( l - a )  1 

f The author is grateful to the referee for this useful suggestion. 
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FIGURE 1. A typical velocity profile with a = 0-06 and E = 1.7. 

where 

and 5; is the value of U at 7 = 0. With some effort, it may now be verified that I (  1)  = 0 
so that Burns’ condition (3.9) is satisfied. 

4. Results and conclusions 
Now we discuss the special time-dependent solutions found above which do not 

contain critical levels and which are in the neighbourhood of some of Freeman’s 
solutions. The roots Nl and N, of the quadratic 

(4.1) 

(4.2) 

(1 + 2cG2(u - 1)) N2+h(2u - 1) N +  4 = 0 

are real, distinct and positive if 

2 < E, < 1/2U(l-U), 0 < u < 4. 
If we observe the relation 

we can easiIy prove that the conditions (3.19) are satisfied if Z > 1.5. The value of 
E = 1.5 corresponds to nonsheared flows. Subject to conditions (4.2) and E > 1.5, we 
have a large variety of time-dependent self-similar solutions for which the wave speeds 
u are limited to the range 2.25 < h2 < 1 / 2 4  1 - u), 0 < u < +. The upper range for 
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E2 tends to infinity as a tends to zero, the case considered by Freeman. On the other 
hand as a -+ Q, such waves cease to exist. Freeman’s solutions are self-propagating 
with a speed proportional to (gh)*and do not decay with time. Besides, the dependence 
of h on x and t remains arbitrary for his solutions. In  the present paper, while the phase 
function [ is still proportional to (gh)+, the height H ( x ,  t )  is now explicitly given by 
H = x2/4E2t2 and the solutions decay with time; for example, the water height decays 
like the velocities u and w decay like t-a and t-1 with 0 < a < 8. This class resembles 
that found by Longuet-Higgins (1972, 1976). That the self-propagating or stationary 
solutions can in general be put in the familiar similarity form has been clearly brought 
out by Barenblatt & Zel’dovich (1971). This, in the present case, has already been 
demonstrated by comparison with Freeman’s solutions. 

The explicit nonlinear solution found by Blythe et al. (1972) for linear shear flow is 
a centred expansion wave, depending on x / t  only, and is similar to Freeman’s. The 
comparison with Longuet-Higgins’ (1976) parabolic free surface flow is not quite 
direct since there is no horizontal bottom. We merely note that the dimensions of the 
two-dimensional free parabolic surface for his gravity-free flows vary like t-3 in 
contrast to our free parabolic surface, H = x2/4Z2t2, which under gravity and above 
a horizontal bottom, varies like t-2. The present solutions, like those of Longuet- 
Higgins, are local since H would become infinitely large far away. 

A typical velocity profile for a = 0.06 and Z = 1-7, corresponding to the parameters 
p = 2.5 and q = 0-5 of beta function I.&, q),  is shown in figure 1. 

The author is grateful to the referee for several useful comments. This work was 
carried out under the University Grants Commission Project on ‘Wave Phenomena’ 
no. 23-884178 CSRIF-Code no. 001/Maths/78. 

REFERENCES 

BARENBLATT, G. I. & ZEL’DOVICH, YA. B. 1971 Ruaa. Math. Sum. 26, 45-62. 
BLYTHE, P. A., KAZAKIA, Y .  & VARLEY, E. 1972 J .  Fluid Mech. 56, 241-255. 
BURNS, J. C. 1953 Proc. Carnb. Phil. SOC. 49, 695-706. 
FREEMAN, N. C. 1972 J .  Fluid Mech. 56, 257-263. 
LONQTJET-HIQQINS, M. S. 1972 J .  FZuicl Mech. 55, 529-543. 
LONQUET-HIQQINS, M. S. 1976 J .  Fluid Mech. 73, 603-620. 


